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Abstract 

Background  Drug-target interaction (DTI) prediction has become a crucial prerequisite in drug design and drug 
discovery. However, the traditional biological experiment is time-consuming and expensive, as there are abundant 
complex interactions present in the large size of genomic and chemical spaces. For alleviating this phenomenon, 
plenty of computational methods are conducted to effectively complement biological experiments and narrow the 
search spaces into a preferred candidate domain. Whereas, most of the previous approaches cannot fully consider 
association behavior semantic information based on several schemas to represent complex the structure of heteroge‑
neous biological networks. Additionally, the prediction of DTI based on single modalities cannot satisfy the demand 
for prediction accuracy.

Methods  We propose a multi-modal representation framework of ‘DeepMPF’ based on meta-path semantic analysis, 
which effectively utilizes heterogeneous information to predict DTI. Specifically, we first construct protein–drug-
disease heterogeneous networks composed of three entities. Then the feature information is obtained under three 
views, containing sequence modality, heterogeneous structure modality and similarity modality. We proposed six 
representative schemas of meta-path to preserve the high-order nonlinear structure and catch hidden structural 
information of the heterogeneous network. Finally, DeepMPF generates highly representative comprehensive feature 
descriptors and calculates the probability of interaction through joint learning.

Results  To evaluate the predictive performance of DeepMPF, comparison experiments are conducted on four gold 
datasets. Our method can obtain competitive performance in all datasets. We also explore the influence of the differ‑
ent feature embedding dimensions, learning strategies and classification methods. Meaningfully, the drug reposition‑
ing experiments on COVID-19 and HIV demonstrate DeepMPF can be applied to solve problems in reality and help 

*Correspondence:
Zhu‑Hong You
zhuhongyou@nwpu.edu.cn
Quan Zou
zouquan@nclab.net
Chang‑Qing Yu
xaycq@163.com
Yan‑Fang Ma
m19995002283@163.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-023-03876-3&domain=pdf


Page 2 of 18Ren et al. Journal of Translational Medicine           (2023) 21:48 

drug discovery. The further analysis of molecular docking experiments enhances the credibility of the drug candidates 
predicted by DeepMPF.

Conclusions  All the results demonstrate the effectively predictive capability of DeepMPF for drug-target interactions. 
It can be utilized as a useful tool to prescreen the most potential drug candidates for the protein. The web server of 
the DeepMPF predictor is freely available at http://​120.​77.​11.​78/​DeepM​PF/, which can help relevant researchers to 
further study.

Keywords  Drug–protein interactions, Multi-modal, Meta-path, Sequence analysis, Joint learning, Natural language 
processing

Introduction
In the post-genomic era, the prediction of drug-target 
interaction (DTI) plays a pivotal role in drug discovery 
and drug repositioning, which is dedicated to exploring 
new therapeutic use for existing drugs by narrowing 
down the search scope of drug candidates to improve 
the efficiency of drug development [1]. According to 
the statistics, 13–15  years need to be taken to approve 
a new drug, and the development cost ranges from 
US $200 million to US $3 billion [2]. Since the concept 
of polypharmacology [3] emerged, researchers can 
understand drug side effects and find their new usage, 
namely drug repositioning, which can save money and 
time in developing a new treatment, [4]. For example, 
Imatinib Mesylate was only thought to treat Leukemia 
through interacting with Bcr-Abl fusion gene. Later, 
Imatinib Mesylate was found to cure gastrointestinal 
stromal tumors by interacting with PDGF and KIT [5, 
6]. The finding processes of thalidomide, bupropion and 
fluoxetine also share similarities [7].

In previous work, drug repositioning and drug-target 
prediction have often been considered separately. 
In reality, these two tasks have intrinsic correlations 
due to the same drug feature space. Drugs indirectly 
alter biological pathways for treating diseases through 
modulating target activities, which can inextricably 
link the disease domain to the target domain [8, 9]. 
Therein, rapidly determining whether generating the 
interaction between a drug and a protein is a crucial key 
in accelerating the process of drug repositioning, which 
is important for understanding the mechanism of drug 
reaction [10, 11]. However, many human and financial 
resources have been consumed by traditional biological 
experiments [12]. For workload reduction of the wet-
lab experiment, proposing the computational model 
to predict unknown DTI with considering the disease 
domain is urgently needed.

Well-accepted traditional calculation approaches 
for determining DTIs are grouped into two categories, 
ligand-based approach and molecular-docking-based 
approach [13, 14]. The first approach predicts inter-
actions utilizing the similarity between the ligands of 

protein, which is limited by the information of known 
ligands per protein. The other approach utilizes the 3D 
structure of proteins to identify DTIs. However, if the 3D 
structure is unavailable, like membrane proteins, interac-
tion identification will be a challenging task. With biolog-
ical technology and high-throughput technology rapidly 
developing, several multi-omics data have been generated 
to provide diverse biological sources for drug-target pre-
diction and drug repositioning [15–21]. Meanwhile, the 
enhanced performance of the computer promotes the 
chemogenomic computation approaches. Currently, the 
prediction of DTI can be regarded as a binary classifica-
tion problem [22–25]. The chemogenomic methods can 
be divided into similarity-based methods and network-
based methods, which extract and encode the informa-
tion about drugs and targets into representation features 
to train predicting models [27, 28].

The similarity-based methods are based on the underly 
idea that similar drugs may share similar proteins, and 
vice versa. Shi et  al. provided LRF-DTIs which exploits 
pseudo-position specific scoring matrix (PsePSSM) and 
FP2 molecular fingerprint to obtain the raw features, 
and after dimension reduction by Lasso, the random 
forest is used to classify [29]. Similar to LRF-DTIs, Pan 
et  al. put forward a method innovatively using image 
processing algorithms of dual-tree complex wavelet 
transform (DTCWT) to extract evolutionary information 
of proteins and using molecular fingerprints to present 
drug information. Finally, rotation forest is utilized to 
classify [30]. However, due to these methods classifying 
through traditional machine learning models and single 
perspective information, the performance is limited 
and may miss some crucial feature information in the 
process of predicting. Many deep learning methods 
are proposed to solve the problems [27]. Wen et  al. 
proposed the model of DeepDTIs to identify unknown 
DTIs, which automatically extracted structure and 
sequence information, and predicted by the deep belief 
network (DBN) [31]. Huang et  al. designed an augment 
transformer encoder to capture the semantic relation of 
substructure and spliced features of drug and protein 
to put them into the deep neural network (DNN) for 
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prediction [32]. Chen et  al. introduced NeurTN to 
identify DTIs, which made full use of the information on 
drugs, targets and diseases through tensor algebra [33]. 
A model of DeepCDA is designed to test binding affinity 
by Abbasi et al., which learns local substructure patterns 
through convolution layers and LSTM layers to enhance 
the features, and trains the feature encoder network 
[34]. The methods mentioned above are mainly based 
on exploring advanced and reasonable feature-extracting 
approaches to capture the information of drugs and 
proteins, which can be utilized to classify through the 
way of traditional machine learning or deep learning. 
The biggest advantage of similarity-based methods is 
they can predict new drugs and new proteins. Fully using 
biological characteristics can bring strong scalability 
and generalization ability to the model. However, these 
methods cannot capture deep interactions between drugs 
and proteins, and due to single-sided biological structure 
information only being considered, if missing some 
information about drugs or proteins, these models will 
not work.

The network-based method is based on an assumption 
that the drugs tend to interact with similar targets, and 
vice versa. The matrix factorization methods are usually 
proposed with the optimized regularization or profile 
kernel to predict DTIs [35, 36]. Recently, due to increasing 
multi-source data appearing, utilizing multiple types of 
biological functional objects as feature information has 
been getting lots of attention in academia. For example, 
Peng et al. and Shao et al. predicted DTIs by integrating 
various node information through Graph Convolution 
Network (GCN) [37, 40]. Similarly, Wan et al. proposed 
NeoDTI to predict DTIs, based on GCN integrating 
multi-type neighborhood information to advanced 
features through the neural network [39]. These 
methods of features diffusing according to the network 
structure ignore the direct association behavior semantic 
information of the network structure. To make better use 
of multiple features, Chen et  al. drew a self-supervised 
framework to capture the node information of local and 
global perspectives from the heterogeneous network 
[38] and Soh et  al. simply spliced the information of 
sequence and related biological entities into the long 
feature vector to enhance DTIs predicting [41]. These 
methods considered multi-type information. However, 
the way of integrating is too simple to obtain superior 
performance. Additionally, the rich semantic information 
of the meta-path of various schemas is ignored, which 
is crucial for analyzing heterogeneous networks and 
further improving the accuracy of DTI prediction 
[28]. Fu et  al. developed 51 paths and multiplied each 
interaction matrix to generate representation according 
to the current path. Finally, the representation was used 

to predict DTIs by random forest [42]. Li et  al. used a 
two-level neural attention mechanism to obtain latent 
features, which are mapped to the best projection space 
to generate scores by inner product [43]. Although, 
these methods fully used interactive semantics from 
link relationships and topological structure of different 
biomedical information networks, they are still single-
modal methods. Hence, for avoiding the disadvantages of 
the similarity-based and network-based methods, there is 
a requirement to explore a computational method based 
on multi-modal, which simultaneously considers and 
effectively exploits features from multiple perspectives of 
protein–drug-disease association structure information, 
drug information, protein information and similarity 
information.

In this study, a novel deep learning framework 
DeepMPF is proposed, which is based on multi-modal 
representation learning, containing sequence modality, 
heterogeneous structure modality and similarity 
modality. As previous work mentioned, merged multiple 
information provides better generalization than any 
single information [85]. To make DeepMPF can be 
better applied in drug repositioning, the disease domain 
is fully considered in our model. Specifically, we first 
integrate protein–drug-disease association information 
to construct a biological heterogeneous network. 
For capturing heterogeneous structure information, 
six schemes of meta-paths are proposed to generate 
association behavior semantic sequences, which are 
exploited to fully learn node embedding vector through 
maximizing the probability of each center word. Second, 
considering the different biochemical properties, the 
sequence information of the drug and protein is extracted 
by the natural language processing (NLP) method and 3-
mers sparse matrix, respectively. Third, the similarity of 
structure also provides another important perspective. 
We respectively utilized Smith-Waterman scores [44] 
and SIMCOMP [45] to calculate the similarity for each 
pair of protein and drug. Finally, advanced features are 
generated through joint learning. We adopt binary-cross-
entropy loss and backpropagation to train the model. The 
optimizer of adam is utilized to automatically adjust the 
learning rate. The results of five-fold cross-validation 
and comparison with state-of-the-art methods can 
demonstrate that DeepMPF is suitable for predicting 
DTI. Code is available at https://​github.​com/​MrPhil/​
DeepM​PF.

Recently, the COVID-19 pandemic is ongoing. To make 
our model of more practical significance, case studies of 
predicting DTI were conducted, which can be regarded 
as an application of drug repositioning, containing the 
targets related to COVID-19 treatment. Furthermore, 
the protein CYP3A4 related to HIV infection is utilized 

https://github.com/MrPhil/DeepMPF
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for research. In conclusion, our work indicated that 
DeepMPF can be utilized as the prescreening tool for 
predicting DTI in the molecular polypharmacological 
space. More meaningfully, we provide a computational 
platform for related researchers and biologists to 
prescreen the potential DTIs and further validate them 
through wet experiments.

Materials and methodology
Biological heterogeneous network
The gold standard dataset of DTIs worked by Yamanishi 
et  al. [46] is widely utilized as a benchmark dataset. 
According to the type of protein, the dataset can be 
divided into four main datasets containing enzymes, 
G-protein-coupled receptors (GPCR), ion channels 
and nuclear receptors, which have been collected from 
DrugBank [16], BRENDA [47], KEGG ERITE [48] 
and Super-Target [49]. Due to the complete picture of 
association discovery among drug, target and disease 
being of significant importance to understanding the 
underlying molecular mechanisms [50], we collect and 
add the drug-drug interactions (DDIs) network and drug-
disease associations (DDAs) network to the DTIs network 
for constructing the biological heterogeneous network. 
We first downloaded drug-related information from the 
database of DrugBank and disease-related information 
from the database of CTD [20], and then, four different 
heterogeneous networks are respectively constructed 
according to the four main datasets mentioned above to 
perform the subsequence experiments.

In the process of model learning, we employ the known 
DTIs as the positive samples and the rest of the drug-tar-
get pairs are seen as negative samples. Due to the severely 

imbalanced samples, we randomly choose the negative 
samples with the same number of positive samples to 
correct the bias. The positive and negative samples are 
split into train, validation and test sets with the propor-
tion of 7:1:2. For applying DeepMPF to the drug reposi-
tioning task, we construct the dataset proDB to conduct 
case studies. In the proDB, the data of DTIs contains new 
DTIs downloaded from DrugBank (version 5.1.8) and the 
DTIs collected by Shi et  al. [29], and the edge informa-
tion of DDIs and DDAs is added similarly as described 
previously. Table  1 illustrates details of the number of 
various entities and interactions/associations in the five 
heterogeneous networks.

Sequence information and similarity information
As two other perspectives of features for the multi-modal 
model, sequence and similarity information can ensure 
high generalization and strong stability. Additionally, 
rationally exploiting them not only can further improve 
the performance but also can provide the capability of 
identifying drugs outside the heterogeneous network. 
The sequence information of the drug and protein are 
respectively downloaded from DrugBank [16] and 
KEGG [15] databases. Benefiting from the work of 
Yamanishi et al. [46], we can directly utilize the similarity 
information from available data.

Overview of methods
DeepMPF is a deep learning framework proposed to 
predict unknown DTIs based on multi-modal represen-
tation learning. When learning and understanding the 
same phenomenon, such as DTI, multi-modal represen-
tation learning can perform more robust identification 

Table 1  The details of the DTIs gold standard datasets added other heterogeneous information

Data set Interaction types # of entity A # of entity B # of edge A-B

Enzymes Protein–drug Interaction 662 445 2923

Drug-Drug Interaction 248 248 6598

Drug-Disease Association 356 3174 80,943

GPCRs Protein–drug Interaction 95 223 635

Drug-Drug Interaction 133 133 2775

Drug-Disease Association 188 5257 80,077

Ion channels Protein–drug Interaction 204 210 1476

Drug-Drug Interaction 115 115 2875

Drug-Disease Association 183 4438 65,951

Nuclear receptors Protein–drug Interaction 26 54 90

Drug–drug Interaction 43 43 254

Drug-Disease Association 49 5509 50,032

proDB Protein–drug Interaction 3004 3945 20,808

Drug-Drug Interaction 1626 1626 194,264

Drug-Disease Association 2485 7085 2,028,072
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by capturing invisible complementary information in 
individual modalities. Figure  1 shows the flowchart of 
the proposed framework. Our framework contains three 
single modalities which respectively represent sequence 
information perspective modality, heterogeneous struc-
ture information perspective modality and similarity 
information perspective modality. Then, to enhance 
feature representation, the multiple hidden layers fully 
fuse multiple information of different perspectives as 
advanced features, which are utilized to train a model. 
Finally, the features from test samples are fed into the 
trained modal to evaluate predictive performance. Next, 
we will elaborate on the whole flow of DeepMPF.

Representation within sequence information perspective
Due to the difference in biochemical properties between 
the drugs and proteins, we employ different methods to 
extract effective features. For drug sequence information, 
we utilize the NLP method to learn, which benefits from 
the development of deep learning technology. Specifically, 
with representing the SMILES as drug sequences, each 
sequence of the drug is regarded as a sentence, which 

is used to construct a biochemical corpus, and each 
symbol in the sequence is seen as a word. Then, similar 
to the previous work [51], we calculate the embedding 
vectors of biochemical symbols through distributed 
representation vector learning method of word2vec [52, 
53]. The model of CBOW calculates the probability of 
the appearance of the center word on the basis of the 
context word. At first, each word (symbol) is represented 
as one-hot vector xi with V-dimension, where V means 
the number of words in the biochemical corpus. Given 
a length of sliding windows c, the center word can be 
denoted as the arithmetic average of the context word 
under the windows, as follows:

where ω represents a learning weight matrix of the 
hidden layer. Then, through optimizing learning weight 
ω′ , approximating the occurrence probability of the 
actual center word xj to 1 by the function:

(1)h =
1

c
ωT(x1 + x2 + ...+ xc)

Fig. 1  The architecture for the DeepMPF. The A and C respectively descript the extracting process of sequence and similarity information of each 
drug and protein in the heterogeneous network. The feature-extracting process B is under the heterogeneous structure information perspective
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where ω′
i indicates j-th row of the weight matrix ω′ . 

After embedding to drug semantic space, each sentence 
(SMILES of drug) can be represented as a matrix, whose 
rows mean symbol embedding vectors. To reduce dimen-
sion, the representation vector of drugs can be obtained 
through averaging by row. In this work, we set the length 
of sliding windows as 5 and set the embedding dimension 
as 343, which is the same as the embedding dimension of 
protein.

For protein sequence, to fully extract amino acid 
constituents and order information, the features of 
group-level amino acids are caught by the 3-mers sparse 
matrix. In detail, according to the dipole moments and 
side-chain volume, the 20 amino acids are separated into 
7 classes [54, 55], ‘AGV’, ‘ILFP’, ‘TMTS’, ‘HNQW’, ‘DE’, 
‘RK’ and ‘C’, whose names are utilized to replace symbols 
of amino acids in the protein sequence. Afterward, based 
on k-mers, each protein of length n is represented as a 
sparse matrix Lp, whose dimension is 7 k × n-(k-1) [56]. Lp 
is defined as follows:

The value of k is set to 3 which is regarded as an 
empirical parameter [57, 58]. And the feature of the 
conjoint triad pjpj+1pj+2 for each protein is shown in 
Table  2. Furthermore, the vector with the dimension of 
343 can be obtained from Lp through the SVD method.

Representation within heterogeneous structure 
information perspective
Recently graph-based deep learning methods have 
achieved great success in capturing topological infor-
mation about biological entities [59]. As mentioned 

(2)

E = − log P(xj|x1, x2, ..., xc)

= log

V∑

i=1

exp(ω′T
i × h)− ω′T

j × h, j ∈ [1,V ]

(3)Lp = (eij), i ∈ [0, 7k − 1], j ∈ [0, (n− (k − 1))]

(4)eij =
{
1, if pjpj+1pj+2=k−mer(i)

0, else

earlier, sufficiently utilizing the heterogeneous informa-
tion of complex associations among drugs, proteins and 
diseases is a key point of DTIs identification and drug 
repositioning. Due to the different types of nodes and 
edges, meta-path-based topological patterns are used 
for systematic analyses of heterogeneous networks. 
Meta-path can be understood as the consecutive nodes 
and edges between two focused nodes, which can con-
vert network structure to semantic sequence [60].

Specifically, the protein–drug-disease three-
layer heterogeneous network can be regarded 
as a bidirected information graph G = (V ,E) , 
where V indicates the set of entity nodes v ∈ V  , 
and E denotes the set of association edges e ∈ E . 
Let Tv represents the set of entity types and Te 
represents the set of association types. The schema 
of SG = (Tv ,Te) describes the meta-path-structure 
of the heterogeneous graph G. The meta-path M is 
based on the schema SG, which can be represented 
as the form of Tv1 →

Te1 Tv2 →
Te2 ...... →Ten−1 Tvn . 

Meta-path essentially describes different association 
combinations of nodes, and different schema of meta-
path have different semantics. Given a meta-path 
m = (v1, v2, ...vn) , which is based on the schema SGm , 
the types of all nodes have to belong to set Tv, and the 
types of each ei =< vi, vi+1 > in meta-path m must be 
the same as the corresponding Tei in the schema of SGm . 
To generate meta-path instances, the node transition 
probability on step i can be defined as follows:

where the NSGm
(vi) indicates the neighbor nodes of vi 

under the schema of SGm . In this work, due to each meta-
path, whose length is greater than 5, consisting of the 
meta-paths, whose lengths are short than or equal to 5, 
we defined six basic types of meta-paths, as follows:

•	 t-dr-t: target-drug-target. The meta-path denotes that 
the targets related to the same drug should be similar.

•	 t-dr-di-dr-t: target-drug-disease-drug-target. The 
two drugs in the meta-path are related to the same 
disease, thus the two drugs should be similar. Fur-
thermore, the two targets related to similar drugs 
should also be similar.

•	 dr-dr: drug-drug. The edge between drugs indicates 
that the two drugs have the same pharmacological 
characterization. So, these drugs should be similar.

•	 dr-t-dr: drug-target-drug. The meta-path denotes 
that the drugs related to the same target should be 
similar.

(5)

P(vi+1|vi) =






1

|NSGm
(vi)|

, if < vi+1, vi >∈ E, SGm(vi+1) =Tvi+1

0, else

Table 2  3-mer sparse matrix of the protein sequence

p1p2p3 p2p3p4 … pn-2pn-1pn

‘AGV’ ‘AGV’ ‘AGV’ e11 e12 … e1,n-2
‘AGV’ ‘AGV’ ‘ILFP’ e21 e22 … e2,n-2
‘AGV’ ‘TMTS’ ‘AGV’ e31 e32 … e3,n-2
… … … … …

‘C’ ‘C’ ‘C’ e343,1 e343,2 … e343,n-2
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•	 dr-di-dr: drug-disease-drug. The meta-path denotes 
that the drugs related to the same disease should be 
similar.

•	 t-dr-dr-t: target-drug-drug-target. The meta-path 
denotes that the targets related to similar drugs 
should be similar.

Then, under each schema, drug or protein nodes 
are randomly selected as the starting node to generate 
the semantic sequence, which consists of 64 basic 
meta-path instances linked head-to-tail. Various 
schemas can fully capture the complex structure of 
the heterogeneous network, and various semantic 
sequence instances in each schema can fully capture 
specific association information. To effectively extract 
the feature vector of the association information, 
all drug or protein nodes are respectively used as 
the initial node to ensure structural integrality, and 
then we randomly select the initial node 500 times 
to obtain various sequences, which can ensure the 
structural diversity. Finally, the meta-path embedding 
model of CBOW is utilized to generate the embedding 
representations with 64 dimensions of sequences 
of multiple schemes. In the process of the training 
model, we remove the DTIs in the test set to avoid the 
disclosure of information by the semantic sequences.

Representation within similarity information perspective
In order to fully adopt the compensation of features of 
the multimodal mechanism, we further exploit similarity 
information. Specifically, SIMCOMP [45] is used to 
compute the chemical structure similarity of drugs, 
which is based on common substructures between each 
pair of drugs. The similarity matrix of drug Sd, which 
represents chemical space, can be obtained by the 
formula:

where di and dj respectively indicate i-th and j-th drug. 
To calculate the sequence similarity of each pair of 
proteins to obtain the similarity matrix, which represents 
genomic space, the Smith-Waterman score is utilized, 
which is defined as follows:

where pi and pj respectively indicate i-th and j-th pro-
tein. Based on the previous work [46], we utilize the 
row of calculated similarity matrixes as the embedding 
vectors.

(6)Sd(i, j) =
|di ∩ dj|
|di ∪ dj|

(7)Sg (i, j) =
SW (pi, pj)√

SW (pi, pi)
√
SW (pj , pi)

Joint representation based on multiple information 
perspectives
After generating the final representation vector of each 
drug and protein under three single perspectives, multiple 
features should be merged effectively to obtain better 
generalization. The method of fusing them plays a crucial 
role during the training process. Most of the existing 
models simply concatenated the representation of drugs 
and proteins, and then input them into machine learning 
classifiers or DNN, which cannot deal with different 
types of noise and represent features in a meaningful way. 
Inspired by Baltrušaitis et al. [61] and Cao et al. [62], a joint 
representation framework based on the neural network 
is proposed to complete the multi-modal representation 
learning task.

The framework utilizes Y-shaped architecture, 
commonly used for DL-based predictive models [63]. 
As Fig.  2 shows, single modalities respectively begin 
with distinct individual layers, which have 64 neurons. 
Then all the modalities are projected into a joint space, 
which can be regarded as a common space, by the hidden 
layers [64]. The projection process of each representation 
vector f(vi) can be defined as the formula:

where WM and bM respectively indicate the weight 
and bias of the hidden layer of modality M and the 
ReLU = max(0, x) is a function of linear rectification. 
Afterward, under the best projection from multiple 
spaces to the common space, each modality is aggregated 
into the joint multimodal representation through the 
function as follows:

where h
dMj

i  and h
pMj

i  respectively are the representation 
vectors of i-th drug and protein in the joint space of M-
th modality. Finally, the joint multimodal representation 
vector ai is passed through two hidden layers, which 
respectively contain 128 neurons and 32 neurons, to 
obtain the identified results.

Experimental results and discussion
Evaluation criteria and experimental settings
In this work, to evaluate the performance of DeepMPF, 
five-fold cross-validation is applied. We construct the 
training set according to the procedure mentioned above. 
Additionally, six criteria are chosen to make the com-
prehensive evaluation of the robustness of the proposed 
model: the area under the ROC curves (AUC), accuracy 
(Acc.), sensitivity (Sen.), precision (Prec.), F1-score and 
Matthews’s Correlation Coefficient (MCC). The Acc., 

(8)hi = ReLU(WMf (vi)+ bM)

(9)ai = concat(h
dM1
i , h

pM1
i , h

dM2
i , h

pM2
i , h

dM3
i , h

pM3
i )
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Sen., Prec., F1-score and MCC can be defined as the 
function:

(10)Acc. =
TP + TN

TN + TP + FN + FP

(11)Prec. =
TP

TP + FP

(12)Sen. =
TP

TP + FN

(13)F1− score =
2× Prec.× Sen.

Prec.+ Sen.

The mean value of each evaluation criterion can 
ensure a low-variance and unbiased evaluation. 
Besides, the binary-cross-entropy loss is employed 
to judge the proximity between the expected and the 
actual output. The adam optimizer is used and the 
dropout is set to 0.3 to reach the best performance. 
Due to the large difference in the size of all datasets, 
we respectively set the training batch of Enzyme data-
set, GPCR dataset, Ion channel dataset and Nuclear 
receptor dataset as 128, 4, 16 and 2.

(14)

MCC =
TP × TN − FP × FN

√
(TP + FP)× (TN + FN )× (TN + FP)× (TP + FN )

Fig. 2  The detailed joint representation process and the parameter setting
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Assessment of predictive performance
In the experiment, to evaluate the performance of 
DeepMPF, we apply the five-fold cross-validation method 
to four commonly used gold standard datasets. The 
positive and negative sample sets of drugs and proteins 
are meanly divided into five subsets according to the 
five-fold cross-validation. Then we randomly select one 
subset as the testing set, the seven-eighth remaining 
subsets are seen as the training set and the one-eighth 
remaining subsets are seen as the validation set. Finally, 
we plot the graphs and tables to analyze and summarize 
the experimental results.

As Table  3 shown, the average scores of ACC reach 
0.9057, 0.7960, 9305 and 0.7500 in all gold standard data-
sets. Besides, our framework respectively achieves aver-
age AUC of 0.9645, 0.8781, 0.9762 and 0.8271, which is 
shown in Fig. 3. After analyzing the results, on the data-
sets of Enzyme and Ion channel, our method achieves a 
better performance of high values of Acc. and AUC and 
slight fluctuation of results. While, on the datasets of 
Nuclear receptor, relatively poor results are obtained. 
The difference in performance is mainly caused by the 
size of datasets, that too small size of datasets can limit 
the capability of DTIs prediction. And another reason 

possibly is that DeepMPF is more sensitive to the protein 
type of Enzyme and Ion channel. However, we still reach 
the high AUC of 0.8832 on the smallest dataset, which 
reflects the proposed framework based on multi-modal 

Table 3  Five-Fold cross-validation results on four gold-standard datasets through DeepMPF

Dataset Fold Acc Prec Sen F1 MCC

Enzyme 1 0.9111 0.9242 0.8957 0.9097 0.8226

2 0.9111 0.9397 0.8786 0.9081 0.8240

3 0.8973 0.9218 0.8682 0.8942 0.7959

4 0.9034 0.9083 0.8974 0.9028 0.8069

5 0.9058 0.9217 0.8870 0.9040 0.8122

Average 0.9057 ± 0.0058 0.9231 ± 0.0112 0.8854 ± 0.0122 0.9038 ± 0.0061 0.8123 ± 0.0116

GPCR 1 0.7756 0.8571 0.6614 0.7466 0.5661

2 0.8031 0.8667 0.7165 0.7845 0.6156

3 0.8228 0.8596 0.7717 0.8133 0.6491

4 0.7756 0.8365 0.6850 0.7532 0.5604

5 0.8031 0.8291 0.7638 0.7951 0.6082

Average 0.7960 ± 0.0203 0.8498 ± 0.0161 0.7197 ± 0.0481 0.7785 ± 0.0282 0.5999 ± 0.0369

Ion channel 1 0.9375 0.9360 0.9392 0.9376 0.8750

2 0.9407 0.9610 0.9186 0.9393 0.8822

3 0.9169 0.9271 0.9051 0.9160 0.8341

4 0.9254 0.9435 0.9051 0.9239 0.8516

5 0.9322 0.9264 0.9390 0.9327 0.8645

Average 0.9305 ± 0.0096 0.9388 ± 0.0143 0.9214 ± 0.0171 0.9299 ± 0.0098 0.8615 ± 0.0192

Nuclear receptor 1 0.8333 0.9286 0.7222 0.8125 0.6838

2 0.7222 0.7857 0.6111 0.6875 0.4558

3 0.6667 0.7500 0.5000 0.6000 0.3536

4 0.6944 0.7059 0.6667 0.6857 0.3895

5 0.8333 0.8750 0.7778 0.8235 0.6708

Average 0.7500 ± 0.0786 0.8090 ± 0.0913 0.6556 ± 0.1069 0.7219 ± 0.0947 0.5107 ± 0.1565

Fig. 3  The ROC curves performed by DeepMPF framework based on 
the four gold standard datasets. A, B, C and D respectively indicate 
the results of Enzyme, GPCR, Ion channel and Nuclear receptor
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representation learning is suitable for identifying 
unknown DTIs.

With the exception of the quantitative analysis, we 
visualize the results of DTIs identification on the test-
ing set of Ion channel by t-SNE [65] to further demon-
strate the superior predictive ability of our framework. 
As shown in Fig. 4, the ‘ + ’ with the color of dark green 
indicates the positive sample, and ‘-’ with the color 
of lime green indicates the negative sample. With the 
number of training epoch enhancing, two types of sam-
ples can be gradually separated, and finally can be basi-
cally identified.

Ablation experiments
To better test the contribution levels of the different sin-
gle modalities of DeepMPF in DTIs identification, the in-
depth ablation study has been conducted with extensive 
experiments. To this end, we denote our framework as 
the complete multimodal model and perform the leave-
one-out validation on each modality part of the model to 
test the single modality with the largest effect. Addition-
ally, we also test the framework with only sequence modal 
information, which can partly reflect the overall per-
formance of the traditional method based on similarity. 
‘Without sequence’ represents our framework without 
the modality information of the sequences of drugs and 
proteins. ‘Without meta-path’ denotes our framework 
without the modality information of the heterogeneous 

structure association among drugs, proteins and dis-
eases. ‘Without similarity’ means our framework with-
out the modality information of the similarity of drugs 
and proteins. ‘Sequence only’ indicates our framework 
only using the modality information of the sequences of 
drugs and proteins.

We draw Table  4 to make analyzation. At first, the 
value of AUC is decline in each ablation experiment, and 
obviously, the modality information of the heterogene-
ous structure performs the most significant contribution 
to the first three datasets. However, in the last dataset, 
this modality provides little contribution compared with 
other modalities. One of the possible reasons is the large 
heterogeneous network may bring too much noise infor-
mation for small datasets, which makes the representa-
tion pattern of sequence and similarity more useful and 
more suitable. In the last ablation experiment, only the 
result on the last dataset is anomalous, whose value of 
AUC is higher than the AUC values of the first and third 
ablation experiments but lower than the AUC values of 
the second ablation experiments. It also indicates that the 
modality information of the sequences is more suitable 
for the small dataset. Even so, the multi-modal model 
can achieve the optimum performance only when fully 
exploiting and fusing all the single modalities. Undenia-
bly, the modality information of the heterogeneous struc-
ture plays a crucial role in our framework, thus related 
impact factors are discussed in the later sections.

Fig. 4  Visualization in the 2D space by t-SNE of the learned DTI embeddings on the dataset of Ion channel

Table 4  Results of ablation test on DeepMPF for AUC​

The bold values represent the maximum drop value of AUC on each dataset among the comparisons except the term of sequence only

Dataset DeepMPF (ours) Without sequence 
modality (-△)

Without heterogeneous 
structure modality (-△)

Without similarity 
modality (-△)

Only modality 
of sequence 
(-△)

Enzyme 0.9645 0.9618 (− 0.0027) 0.9405 (− 0.0240) 0.9503 (− 0.0142) 0.8462 (− 0.1183)

GPCR 0.8781 0.8628 (− 0.0153) 0.8403 (− 0.0378) 0.8573 (− 0.0208) 0.7599 (− 0.1182)

Ion channel 0.9762 0.9747 (− 0.0015) 0.9463 (− 0.0299) 0.9657 (− 0.0105) 0.7341 (− 0.2421)

Nuclear receptor 0.8271 0.7870 (− 0.0401) 0.8131 (− 0.0140) 0.7938 (− 0.0333) 0.8050 (− 0.0221)
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Influence of embedding dimension of the heterogeneous 
graph
As the discussion in the previous section, modality infor-
mation of the heterogeneous graph structure crucially 
affects the identification results. Thus, we comprehen-
sively evaluate predictive performance to analyze the 
influence of different dimensions, containing 16, 32, 64 
and 128. As shown in Fig.  5, with the number of latent 
factors increasing, the performance roughly presents 
a trend of the first rise and then decline with a small 
magnitude. In our study, 64 is chosen to obtain the rich 
topology information, which can capture adequate infor-
mation without much noise introduction. Finally, it can 
be demonstrated that DeepMPF has a stable capability of 
DTIs prediction over a wide range of embedding repre-
sentation dimensions.

Influence of learning strategies of heterogeneous graph
In our framework, we propose six schemas based on 
meta-path to fully capture the topological structure of 
the heterogeneous graph, and then, the latent semantic 
information is extracted by CBOW. To verify the validity 
of our learning strategies on the heterogeneous graph, we 
test and analyze the other four learning strategies. First, 
based on our meta-path schemas, we directly regard each 
basic meta-path instance as a semantic sequence, which 
can pay more attention to the local heterogeneous struc-
ture. Second, we used MAGNN, proposed by Fu et  al. 
[66], which is also a heterogeneous graph embedding 
method. Additionally, two graph embedding methods of 
LINE [67] and DeepWalk [68] are used for comparison. 
For a fair, the embedding dimension is the same and the 
parameters of each embedding method are default. As 
Fig.  6A–D shows, although there are a few fluctuations 
in some evaluation criteria, our learning strategy can 
reach the best performance, which is attributed to our 
method can preserve the high-order nonlinear structure 
and catch latent information of the deep heterogeneous 
graph. To verify the results of the comparison experi-
ments are truly significant, we utilized the statistical 
learning method to plot boxplots, as shown in Fig. 6A’–D’.

Comparison with different classification methods
In our DeepMPF framework, we fully exploit multi-
perspective features to identify unknown DTIs through 
multi-modal joint representation with Y-shape struc-
ture neural network. To test the effectiveness of our 
framework, three classifiers are used to compare the 
AUC value, regarded as an important criterion for 
binary classification, with various learning strategies 

Fig. 5  The performance with different embedding dimensions of the 
heterogeneous graph on each dataset

Fig. 6  The performance of different learning strategies of the heterogeneous graph on each dataset
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of the heterogeneous graph mentioned above on the 
four datasets. Specifically, all the feature descriptors 
are unchanged to ensure a fair comparison. The results 
of prediction through Gaussian NB, Decision Tree and 
Logistic Regression are shown in form of histograms 
for intuitive comparison in Fig.  7. Obviously, although 
our embedding strategies did not obtain the best perfor-
mance with the other three classifiers, our embedding 
strategy achieved a promising performance with our 
joint representation learning framework. It is worth not-
ing that, when using our framework, the lowest value of 
AUC is still higher than the other comparison methods, 
which further demonstrates our framework can advance 
the representation of multi-perspective.

Comparison with other state‑of‑the‑art methods
Plenty of computational methods have been proposed 
for DTI prediction [86]. To more objectively verify the 
effectiveness and stability of DeepMPF, we compared 
the predictive performance through the value of AUC, 
which is frequently used to measure the performance of 
the model, with other 13 state-of-the-art computational 
models in the same four datasets based on fivefold cross-
validation. The comparison method can be partitioned 
into two classes: Lower-view and Higher-view [84]. 
Table  5 described the results of AUC and the results of 
other performance metrics are reported in Additional 
file 1: Table S1. It can be seen that compared with other 
methods, our method respectively obtains the highest 
AUC value on the datasets of Enzyme and Ion chan-
nel with outstanding improvements of 0.0106 ~ 0.1225 
and 0.0076 ~ 0.0862. However, on the dataset of Nuclear 
receptor and GPCR, the AUC value of our model is 
respectively lower than the method of Li et al. and SAR. 
A possible reason is that the most critical modality of 
heterogeneous structure in our framework is more suit-
able for a large network. Thus, applying DeepMPF to 
the datasets of Nuclear receptor and GPCR just obtains 
the general predictive results. Notably, the method of 
Li et al. and SAR only get the highest AUC value on the 
corresponding dataset, but relatively low AUC values on 
the other datasets, which indicates these methods have 
poor generalization. Additionally, the method of lNeu-
Rank performs the second-highest AUC values on both 
Enzyme and Nuclear receptor datasets and acceptable 
performance on the other two datasets, which means it 
has high generalization ability. And then, our method still 
shows better performance than lNeuRank. On the whole, 
although the performance of DeepMPF framework 

Fig. 7  The AUC values of different classifiers with various embedding 
strategies on each dataset

Table 5  AUC values of comparing with state-of-the-art methods on gold-standard datasets

The bold values represent the higher values in each dataset

Model view Method Enzyme GPCR Ion channel Nuclear receptor

Lower-view Zhan et al. [69] 0.9532 0.8882 0.9349 0.8199

Li et al. [70] 0.9288 0.8856 0.9171 0.9300
Pan et al. [30] 0.9498 0.8775 0.9270 0.7755

SAR [73] 0.9486 0.8902 0.9428 0.8822

MLCLE [74] 0.8420 0.8500 0.7950 0.7900

RFDT [75] 0.9150 0.8450 0.8900 0.7230

DeepDTIs [31] 0.9067 0.8603 0.9417 0.8043

Higher-view DASPfind [26] 0.9291 0.8810 0.9068 0.8527

DT‑Hybrid [71] 0.8980 0.8387 0.9200 0.6995

NRWRH [72] 0.9289 0.8493 0.9156 0.7390

CMF [76] 0.8785 0.8244 0.8974 0.7637

BRDTI [77] 0.8834 0.8487 0.9234 0.7962

lNeuRank [78] 0.9539 0.8615 0.9686 0.7832

DeepMPF (our) 0.9645 ± 0.0046 0.8782 ± 0.0236 0.9762 ± 0.0015 0.8272 ± 0.0894
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outperforms many other state-of-the-art methods, there 
is still improvement room for our method.

Application in drug repositioning
As the above description, predicting potential DTIs can 
provide great help for the task of drug repositioning. The 
outbreak of COVID-19 has caused millions of deaths 
since 2019, thus, it is crucial to repurpose old drugs for 
new therapeutic [79]. To apply our method in real life and 
to validate that DeepMPF can help drug repositioning, 
we used DeepMPF to find therapeutic drugs for COVID-
19-related proteins. In this study, three homo sapiens 
proteins, inextricably related to COVID-19 are utilized to 
conduct the drug repositioning task. The related proteins 
are shown in Table 6.

The dataset of proDB is utilized to train the predic-
tive model after deleting the DTIs of three testing pro-
teins and DDAs of COVID-19 from the train set, which 
can avoid label leakage. Specifically, the tested proteins 
are respectively paired with each drug. Then, the multi-
modal information of pairwise DTI is fed into the pre-
dictive model. Finally, the score of each DTI pair can be 
generated. We comprehensively ranked the drug scores 
representing the probability associated with COVID-19, 

and then respectively selected the top 5 drugs in ascend-
ing order, which is reported in Table 7. We note that 5, 
3 and 5 out of the top 5 drugs identified have been vali-
dated by the related publications. According to the evalu-
ation of the European Food Safety Authority (EFSA), 
minerals of zinc and copper, etc. play a crucial role in the 
immune system, which can reduce the harm of COVID-
19 [80]. As the first part of Table  7 shows, copper, zinc 
and zinc salt exhibit the highest scores. Copper can be 
found in several supplements and vitamins and is critical 
to the function of many enzymes, like cytochrome c oxi-
dase. The detailed process of drug function can be found 
in the evidence publications, and the detailed scores are 
reported in Additional file 2: Table S2–S4.

Additionally, to further explain the reliability of Deep-
MPF, we also apply our framework to predict potential 
therapeutic drugs for HIV-related protein and then select 
the top 20 drugs in ascending probability order to ana-
lyze. During the course of HIV treatment, the patients 
often take at least three drugs to suppress viral replica-
tion. However, the competition for Cytochrome P450 can 
reduce efficacy in HIV treatment. Accurate identifica-
tion of DTIs can effectively avoid a decrease in drug effi-
cacy. In this experiment, the protein of CYP3A4, closely 

Table 6  Three homo sapiens proteins related to COVID-19

Protein name UniProtKB ID Description Evidence

Apolipoprotein E P02649 Allele APOE*4 is strongly related to COVID-19 PMID: 33450186

Angiotensin-converting enzyme 2 Q9BYF1 It can increase the affinity for SARS-CoV-2 spike protein PMID: 32753553

Elongation factor 1-alpha 1 P68104 It is required for viral replication and translation of viral proteins PMID: 33495306

Table 7  The predicted top 10 drugs associated with COVID-19 based on three related proteins

Related protein Drug name DrugBank ID Score Evidence

Apolipoprotein E (P02649) Copper DB09130 0.9953 PMID: 32503814

Zinc chloride DB14533 0.9936 PMID: 34972736

Silver DB12965 0.9912 PMID: 32958250

Zinc acetate DB14487 0.9884 PMID: 32522597

Zinc DB01593 0.9883 PMID: 32319538; PMID: 33094446

Angiotensin-converting enzyme 2 (Q9BYF1) Cefoxitin DB01331 0.9894 N.A

Cloxacillin DB01147 0.9890 PMID: 35378738

Piperacillin DB00319 0.9869 PMID: 33576584

Moexipril DB00691 0.9860 PMID: 34631362; PMID: 34458381

Cefmetazole DB00274 0.9836 N.A

Elongation factor 1-alpha 1 (P68104) Copper DB09130 0.9711 PMID: 32503814

Zinc chloride DB14533 0.9558 PMID: 34972736

NADH DB00157 0.9391 PMID: 33132205

Caffeine DB00201 0.8998 PMID: 34067243; PMID: 33193427

Flavin adenine 
dinucleotide

DB03147 0.8701 PMID: 32294562; PMID: 34823857
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Table 8  The top 20 drugs interacting with CYP3A4

Rank Drug name DrugBank ID Evidence Rank Drug name DrugBank ID Evidence

1 Amitriptyline DB00321 Confirmed 11 Ketamine DB01221 Confirmed

2 Haloperidol DB00502 Confirmed 12 Enflurane DB00228 N.A

3 Brigatinib DB12267 Confirmed 13 Melatonin DB01065 N.A

4 Aripiprazole DB01238 Confirmed 14 Nandrolone decanoate DB08804 N.A

5 Methadone DB00333 Confirmed 15 Glycyrrhizic acid DB13751 N.A

6 Pyrimethamine DB00205 N.A 16 Dabrafenib DB08912 Confirmed

7 Rhein DB13174 Confirmed 17 Naringenin DB03467 N.A

8 Olaparib DB09074 Confirmed 18 Tenofovir disoproxil DB00300 N.A

9 Ponatinib DB08901 Confirmed 19 Tepotinib DB15133 Confirmed

10 Zanubrutinib DB15035 Confirmed 20 Nilotinib DB04868 Confirmed

Fig. 8  Network visualization of known and newly discovered DTIs of the top 100 HIV-related proteins. Red lines mean the interactions with no 
support and blue lines mean confirmed interactions. Thick and thin lines represent the possibility of potential interactions
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related to HIV, is chosen as the test target. The results are 
shown in Table 8.

From the table, it can be found that 9 of the top 10 
drugs interacting with CYP3A4 are confirmed by Drug-
Bank, and all of the top five drugs are confirmed, which 
demonstrates our method has a good capacity to iden-
tify unknown DTIs. To clearly and completely observe 
the results of identifying DTIs, the novelly identified and 
known interactions of the top 100 are visualized in Fig. 8. 
The complete prediction scores are reported in Addi-
tional file 2: Table S1. It can be seen that 72 of 100 inter-
actions are identified successfully by DeepMPF. More 
importantly, the remaining unconfirmed 28 interactions 
are given high confidence, especially pyrimethamine, to 
deserve further study. In summary, DeepMPF has prom-
ising performance in discovering potential DTIs above 
analysis. Moreover, our work provides some DTIs with 

high confidence, which can facilitate the progress of drug 
repositioning through further wet-lab assays.

Molecular docking experiment
To further prove the credibility of DeepPMF, molecular 
docking experiments [81] are conducted on the top 14 
drugs listed in Table 8. The intermolecular binding ability 
of each drug with CYP3A4 is computed. Specifically, the 
structure of CYP3A4 (PDB ID: 1W0E) is downloaded 
from RCSB PDB [82], and the structures of the drug 
are collected from PubChem [17]. Then we utilized 
AutoDockTools [83] to process the structure files, 
and put the processed files into AutoDock software to 
complete the molecular docking experiment of protein 
and ligands. The binding energies, i.e., binding free 
energy, of molecular docking are shown in Table 9. The 
lower binding energy indicates the stronger binding of 
the molecular.

We note that for the top 5 confirmed drugs Amitrip-
tyline, Haloperidol, Brigatinib, Aripiprazole and Metha-
done, their binding energy with CYP3A4 respectively 
are −  4.93  kcal/mol, −  3.28  kcal/mol, −  3.46  kcal/mol, 
− 3.62 kcal/mol and − 3.77 kcal/mol. The binding ener-
gies of the unconfirmed drugs of Pyrimethamine, Enflu-
rane, Melatonin and Nandrolone decanoate are also 
positioned at a relatively lower level, even lower than 
several confirmed drugs.  Moreover, their binding sites 
are presented in Fig.  9. Overall, these analyses further 
demonstrate the interactions between the four drugs 
and CYP3A4 are possibly existed, however, the molecu-
lar docking experiment just provides an interaction 

Table 9  The binding energies between predicted drugs and the 
protein of CYP3A4

Drug name Binding 
energy (kcal/
mol)

Drug name Binding 
energy (kcal/
mol)

Amitriptyline − 4.93 Olaparib − 4.14

Haloperidol − 3.28 Ponatinib − 4.19

Brigatinib − 3.46 Zanubrutinib − 4.08

Aripiprazole − 3.62 Ketamine − 3.99

Methadone − 3.77 Enflurane − 1.91

Pyrimethamine − 4.45 Melatonin − 3.83

Rhein − 3.97 Nandrolone decanoate − 4.89

Fig. 9  Molecular docking results for Nandrolone decanoate, Enflurane, Melatonin and Pyrimethamine bound with HIV-related protein CYP3A4
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possibility, and the more accurate results entail in-depth 
wet-lab experiments to verify.

Conclusion
In this study, we proposed a framework of DeepMPF to 
predict candidate DTIs through learning multi-modal 
information. Related data is collected to construct 
a protein–drug-disease association heterogeneous 
network benefitting extracting the deep network 
structure information. To comprehensively capture 
complex topology structures crossing the chemical and 
biological space, we design six meta-path schemas used 
to learn network heterogeneity semantics information 
preserving the high-order nonlinear structure and 
extracting latent information. The sequence feature 
and similarity feature are fully utilized to ensure 
complementing information. The joint representation 
learning module is designed to effectively fuse 
different modality information as highly representative 
comprehensive feature descriptors and calculate the 
probability of interaction. Through comparison with 
state-of-the-art methods and analysis of classification 
or feature extraction strategies, it can be concluded 
our method achieved better performance and have the 
reliable ability to predict DTI. Additionally, to verify 
the efficacy of adopting DeepMPF in real-life problems, 
the experiment of drug repositioning on COVID-19 
and HIV and the further analysis of molecular docking 
experiments demonstrate our method also has a 
great role in drug discovery. Furthermore, an online 
prescreening platform is built for related researchers 
and biologists to validate possible interactions from 
the perspective of chemogenomic and biomedicine. 
The prescreening platform is freely available at http://​
120.​77.​11.​78/​DeepM​PF/. Code is available at https://​
github.​com/​MrPhil/​DeepM​PF. In conclusion, the 
experimental results demonstrate that DeepMPF is a 
reliable prescreening tool for further study and validate 
the mechanism of the DTIs. In the future, we will 
further improve the performance and generalization 
of the model by incorporating more information and 
using self-attention to enhance the drug development 
process.
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